
1

Solving Large-Scale Allocation Problems with Partially Observable Outcomes

Kirk A. Yost and Alan R. Washburn1

Naval Postgraduate School

Abstract

We introduce a new technique for solving large-scale allocation problems with partially observable states
and constrained action and observation resources. Our decomposition uses a master linear program (LP)
to determine allocations among a set of control policies, and uses partially observable Markov decision
processes (POMDPs) to determine improving policies using dual prices from the master LP.

1. Introduction

We introduce a technique for solving optimization problems where constrained resources must be

sequentially allocated to control a large number of objects, each of which has a finite number of states.

The resources have random effects on the objects, and the outcomes are not known with certainty; that is,

the observations about the object states are “noisy.” Models with noisy observations are said to have

partial observability, and this characteristic distinguishes this problem from typical stochastic programs.

Allocation problems with partial observability are common. In medicine, treatments with random effects

are made on the basis of error-prone tests and examinations. In the criminal justice system, sentencing

decisions are made under similar circumstances. Our work is motivated by a military problem where the

objects are targets that are either “live” or “dead” and the resources are weapons and sensors.

While the literature has tended to treat this situation using decision-theoretic approaches (e.g., Marshall

and Oliver [13]), these methods do not explicitly handle constrained resources, nor do they allow such

resources to be shared among differing types of objects. In the math programming world, a problem of

this class would normally be cast as a stochastic program with recourse (e.g., Haneveld [9]). However, the

structure of the problem makes this approach very difficult. First, the outcomes are not known with

certainty, so the typical recourse mechanism of acting, observing the random outcomes, and correcting at

some cost does not really apply. Also, the stochastic program with recourse does not generally allow the

probability of realizing a scenario to be influenced by actions taken. In this model, the states of the objects

depend on the actions taken, so modeling this is crucial. Finally, stochastic programs do not normally

consider the notion of dedicated and constrained observation resources.

1 Professor Alan R. Washburn, Code OR/Ws, Operations Research Dept, Naval Postgraduate School, Monterey, CA

93943-5000.

2

There is some work being done in this area. Jonsbraten [10] studies a well-drilling application with partial

observability, and he approaches the problem as a decision tree with constraints. Jonsbraten, Wets, and

Woodruff [11] develop a stochastic programming model where the random elements do depend on the

actions taken. They note the literature in this area is very sparse, and were only able to find one paper on

the Markovian case (Pflug [16]). We have been unable to find any papers in the math programming

literature addressing partial observability and constrained observation resources.

Castenon [4] addresses a problem of this class in a paper analyzing the allocation of a single aircraft

sensor to find targets of multiple types. He suggests using partially observable Markov decision processes

(POMDPs) along with a Lagrange multiplier technique to handle a single contraint on observations. He

notes that finding a way to generalize the technique for larger problems is a subject for further research.

We offer a method to solve such a generalized problem. First, we employ a master linear program (LP) to

implicitly assign costs to resources; and second, we solve a set of POMDPs using these resource costs to

find improving columns for the master LP. The resulting algorithm is a column-generation method that

can be used to solve certain allocation problems that are otherwise intractable. We begin by describing the

case where there is only one object.

2. Core Problem for a Single Object

Let I be a set of m constrained resources, and let R and Y ≡ (Y1, Y2, ... , Ym) be m + 1 random variables,

with R being a reward and Yi being the amount of resources of type i consumed. The joint distribution of

R and Y depends on which policy is chosen. We make no assumptions about R and Y other than that each

has a known expected value for every policy. The object is to choose a policy within some finite feasible

set S, possibly at random, to maximize E(R) subject to E(Y) ≤ b, where b is an appropriately dimensioned

vector of resources and E() is the expected value operator. Denote E(R) and E(Yi) when using policy s as

ERs and EYsi., respectively. With this notation, we can express our maximization problem as a linear

program LP(S) with variables xs:

LP(S):

st

max ER x

EY x b i I

x

x s S

s s
s S

si s
s S

i

s
s S

s

∈

∈

∈

∑
∑
∑

≤ ∀ ∈

=

≥ ∀ ∈

1

0

Variable xs is the probability of choosing policy s, and the sums in the objective function and resource

constraints are correct by the conditional expectation theorem. We assume that b ≥ 0 and that there is a

3

null policy in S that consumes no resources, so LP(S) has a feasible solution. Note that LP(S) is a “soft”

problem in the sense we only constrain the expected resource consumption. We will comment further on

this in Section 6.

We are interested in problems where S is so large that enumeration of all possible policies is out of the

question. In such cases, the best approach is usually to find an H-optimal algorithm. This in turn requires

upper and lower bounds on the maximized objective function value, v(S). A lower bound is readily

available by solving LP(T), where T is any subset of S. To obtain an upper bound, consider the following

Lagrangian relaxation LPU(S; O), where O = (O1, ... , Om):

LPU(S;):

st

λ λmax ER x b EY x

x

x s S

s s
s S

i i si s
s Si I

s
s S

s

∈ ∈∈

∈

∑ ∑∑

∑

+ −ç
åæ

ä
âã

=

≥ ∀ ∈

1

0

Let u(S;O) be the optimal value of LPU(S;O). As long as O � 0, u(S;O) � v(S), with equality in the case

where O is equal to the dual variables of the resource constraints of LP(S) (e.g., Parker and Rardin [15]).

Furthermore, since LPU(S;O) contains one simple constraint, the optimal value is given by

u S b ER EYi i
i I

s S
s i si

i I

(;) maxλ λ λ= + −%&'
()*∈

∈
∈

∑ ∑ (1)

For any particular set of resource prices O, finding the upper bound is a matter of solving the

maximization part of u(S;O), which we assume to be possible in spite of the large size of S. Solving the

maximization part of u(S;O) means finding a policy in S that improves the current LP solution, which is

the same as finding an improving column for LP(S). With this in mind, we can write a solution algorithm

for LP(S) by using dynamic column generation (Gilmore and Gomory [7], [8]):

1. Choose an initial subset T1 of S. Set k = 1.

2. Solve LP(Tk) for v(Tk) and the dual prices Ok.

3. If u(S;Ok) - v(Tk) ≤ H stop; otherwise, let Tk+1 = Tk ∪ {s}, add 1 to k and go to 2.

If s∈Tk, then u(S; Ok) = u(Tk; Ok) = v(Tk), so the union operation in step 3 is always nontrivial. It follows

that the algorithm will stop after at most |S| steps, even if H=0. However, we take little comfort in this due

to the assumed large size of S. Our aim is to find an H-optimal solution after a number of steps that is

much smaller than the theoretical limit.

4

3. Applying Partially Observable Markov Decision Processes (POMDPs)

The algorithm described in section 2 could be useful in any circumstance where LP(S) is hard to solve

while (1) is not, and is a generic column-generation scheme. However, the characteristics of this problem

– sequential decisions and partial observability – make the POMDP an attractive choice for the

subproblem.

A POMDP involves a sequence of decisions u0,…,uN-1 and a sequence of observations z0,…,zN-1, with a

decision-making policy being admissible if uk depends only on the observable history Ik≡(z0, z1,…,zk,u0,

u1, …,uk-1), for k = 0,…,N-1 (e.g. Bertsekas [1]). The observation zk depends stochastically on the true

state xk of the process at time k, but the true state xk is known to the decision-maker only to the extent that

it can be deduced from Ik. The set of admissible policies S is typically enormous, but POMDPs are

solvable as a practical matter on account of the Markovian nature of state evolution and the way

observations are generated. The crucial result is that the state probability distribution given Ik is a

sufficient statistic for the decision uk [1], which has the effect of converting the POMDP into an ordinary

Markov Decision Process over a much larger but observable (via Bayes Theorem) state space.

The specification of a POMDP, as originally formalized by Smallwood and Sondik [18], normally

includes a scalar reward function g(k,u,x) that is accumulated over time to form the objective. We retain

that function, but in addition require that the expected resource consumption r(k,u,x), a vector of

dimension m, be specified for each action u that might be taken at time k. The cost of the resources

consumed at prices λ is then the inner product λr(k,u,x). The net profit function G(k,u,x) is g(k,u,x)-

λr(k,u,x), and the expected total net profit for a given policy s is the accumulation of all net profits:

p s E g X G k U XN
k

N

k k; () (, ,)λ1 6 = +á
!

"
$#=

−

∑
0

1

(2)

where g(XN) represents a terminal reward that depends only on the final state. The random variables Uk

and Xk have a joint distribution that depends on s. The optimal policy is the policy in S that maximizes

the expected total net profit, which maximum we denote p(S; λ).

The accumulated net profit can also be written as the difference R-λY, where R is the accumulated reward

(including g(XN)), and Y is the vector of accumulated resource consumption. Recalling the definitions of

ERs and EYsi.from section 2, the POMDP solution of (2) is equivalent to:

p S ER EY
s S

s i si
i

m

; maxλ λ1 6 = −%&'
()*∈

=
∑

1

(3)

5

This provides the link between the POMDP and the solution algorithm for LP(S). Solving the POMDP is

equivalent to solving LPU(S; λ), and the solution provides an upper bound on v(S) through the formula

u S b p Si i
i

m

(;) (;)λ λ λ= +
=
∑

1

(4)

Furthermore, the maximizing policy also defines a new column to be included in the master LP.

Let wk be the dual value of the equality constraint in the solution of LP(Tk). The maximized net profit

p(Tk;Ok) is necessarily equal to wk, so step 3 of the algorithm could be written as

3. If p(S; Ok) -wk ≤ ε stop; otherwise, let Tk+1 = Tk ∪ {s}, add 1 to k and go to 2.

In other words, if the POMDP cannot find a new column with a reduced cost greater than H, the algorithm

terminates with an ε-optimal solution.

As applied to POMDPs, the algorithm of section 2 is essentially a method for including resources that are

constrained, rather than being modeled through explicit prices. From the point of view of the POMDP

user, this methodology is an important extension. The entire POMDP literature, with the notable

exception of [4], assumes a known cost structure. A common situation in reality (as will be demonstrated

in our example problem) is that there is no marginal cost structure for actions or observations; there are

merely availability constraints.

By the basic theory of linear programming, there exists an optimal solution for LP(S) that involves at

most m + 1 basic variables. We assume m is much smaller than |S|, so it should come as no surprise that

most of the computation time involved in solving LP(S) is spent in the column generation phase (POMDP

calculations), rather than in the master LP. The POMDP problem has been shown to be PSPACE-

complete by Papadimitirou and Tsitsiklis [14], and even the best of the current algorithms have difficulty

solving a single POMDP with a long time horizon or many states. Since our algorithm solves a sequence

of POMDPs, we must be concerned about the computational feasibility of such an approach. Nonetheless,

we have found that the decomposition procedure works well for problems with small state spaces.

4. Scaling Up to Multiple Objects

Consider next a problem where there is a set J of classes of identical objects, with Nj being the number of

objects in class j. Each class j has a separate set Sj of feasible policies, with each policy affecting only a

single object in j. Let S Sj
j J

=
∈
å . Also let xsj be the average number of objects in class j to which policy s

is applied, and assume that both rewards and resource consumption are additive over classes. Then, since

sums and expected values commute, the expanded master LP (with dual variables in parentheses) is:

6

LP2(S):

st

max

,

ER x

EY x b i I

x N j J w

x j J s S

sj sj
s Sj J

sji sj
s Sj J

i i

sj
s S

j j

sj j

j

j

j

∈∈

∈∈

∈

∑∑

∑∑

∑

≤ ∀ ∈

= ∀ ∈

≥ ∀ ∈ ∈

λ1 6

3 8
0

ERsj is the expected reward when policy s is applied to an object of type j, so by the conditional

expectation theorem the objective function can be interpreted as “average total reward”. Similarly, since

EYsji is the average consumption of resource type i when policy s is applied to an object of type j, the

expression bounded by bi is still the average amount of resource type i used in applying policies to all

objects.

The upper bound LP is now::

LPU2(S;):

st

λ λmax

,

ER x b EY x

x N j J

x j J s S

sj sj
s Sj J

i i sji sj
s Sj Ji I

sj
s Sj J

j

sj j

j j

j

∈∈ ∈∈∈

∈∈

∑∑ ∑∑∑

∑∑

+ −
ç
åæ

ä
âã

= ∀ ∈

≥ ∀ ∈ ∈0

Note the upper bound LP decomposes into |J| separate optimizations. The algorithm of section 2 still

applies, except we have to solve a separate POMDP for each object class. Let

p S ER EYj j
s S

sj i sji
i

m

j

; maxλ λ3 8 = −%&'
()*∈

=
∑

1

(4)

The overall upper bound is given by:

u S b N p Si i
i

m

j j j
j J

; ;λ λ λ1 6 3 8= +
= ∈
∑ ∑

1

(5)

The multiple-object decomposition algorithm, with natural generalizations of the notation used in section

2 (notably Tkj is the subset of Sj used in step k, Tk is the set of all such subsets, and wkj is the jth

component of wk.), is as follows:

1. For all j, choose an initial subset T1j of Sj. Set k = 1.

7

2. Solve LP2(Tk) for v(Tk) and the dual prices Ok, wk.

3. For all j, solve (4) using Ok for pj(Sj; Ok) and optimizing policy sj.

4. For all j, if pj(Sj; Ok) > wkj, let Tj,k+1 = Tj,k ∪ {sj}, else let Tj,k+1 = Tj,k.

5. If u(S, Ok)-v(Tk) ≤ ε, stop. Otherwise, add 1 to k and go to 2.

The multiple-object algorithm stops if none of the object classes generates a new policy in step 4, so it

stops after at most |S| steps. We must now solve |J| POMDPs in each step, so the computational burden

increases when multiple object classes are considered. However, increasing Nj has no computational

effect on any POMDP nor on the master LP, so the algorithm works best on problems where there are few

classes but many objects per class. This comment is partially responsible for the words “large scale” in

the title of this article.

As an aside, we note that the POMDPs could be solved in parallel, since the resource prices decouple

them.

5. Example Problem and Computational Experience

Our application is a crucial one in the military, that of assigning weapons and sensors to targets. Modern

armaments can be fired from very long distances and have high probabilities of kill, but these weapons

are both expensive and in short supply. Also, the long standoff ranges require looks from sensors to

determine the outcome of the attack. The tradeoffs between sensors and weapons have been difficult to

analyze and are of great current interest; see, for example Scott [17].

The objects to be controlled are the targets. They have two states (live or dead), are divided into |J| classes

(bridge, tank column, command bunker, and so on). Each target in class j has a value Cj, and the terminal

reward g(XN) is Cj if the terminal state is dead, otherwise 0. Also, there are several types of resources.

There are aircraft and sensors, whose availabilities are measured in terms of sorties per stage. There are

also weapons that can be dropped from the aircraft, with total weapon consumption over all stages being

constrained. The overall goal of the optimization is to maximize the expected total value of targets

destroyed.

Each action is either a strike, a look, or a pause. A strike is any permissible combination of aircraft,

weapon, and target. Let A ={a} denote the set of available strikes, with pa denoting the known probability

that strike a kills the intended target. Each strike consumes one aircraft sortie and at least one weapon of

some kind. Similarly let O = {o} be the set of looks, each of which is the assignment of a sensor to a

target. Each look o is assumed to have known error probabilities Do ≡ Pr(assess target as live| target is

actually dead) and Eo ≡ Pr (assess target as dead | target is actually live), and each sensor is capable of

8

looking at each target. The pause action consumes no resource and has no effect on the target. Each target

is assumed to be initially live, and the sole purpose of a look at stage k is to provide information about the

target’s state Xk at that time. We assume here that information gained from an observation can be used in

the next stage, but note that the POMDP formulation can accommodate sensors with larger response

delays.

Our example is on the scale of the attack-planning problem for a DESERT STORM-sized scenario. It has

9 stages (3 attack waves a day for 3 days), 9 aircraft types, 42 weapon types, and 65 target types. There

are 5203 feasible aircraft-weapon-target combinations (“strikes”). There are also 10 sensor types, each of

which can look at any target and deliver bomb-damage assessment (BDA). The master LP has 81

constraints for aircraft (one for each type and each stage), 42 weapon constraints, 65 target constraints,

and 90 sensor constraints (one for each type in each stage), so m =278. This problem contains the

characteristics we have been discussing, as |S| is intractably large while m is relatively small.

We solve the POMDP for each target, where the POMDP sufficient statistic is a probability distribution

over the two target states. The probability p that the target is live implicitly determines the distribution, so

we use it for the POMDP state. Let Fj
n(p) be the expected cost of the optimal policy over the last n stages

for an object of type j in state p. The associated dynamic programming recursion DPj(O) is as follows:

DP

for

(pause)

(attack)

(look)

j λ

λ

λ

1 6 1 6

1 6
1 6

2 7
1 6

:

, max max

max

F p C p

n F p

F p

F p p

E F Z

j
j

n
j

n
j

a A
n
j

a a

o O
n
j

o

0

1

1

1

0 1

=

> = − −

−

%
&
KK

'
KK

−

∈ −

∈ −

In this recursion, Oa and Oo are the per-use costs of actions a and o. The effect of an attack is to reduce p

by the factor (1-pa), the probability that the target survives the attack. A look produces a random POMDP

state Z when there are n-1 stages remaining, with two possibilities for Z because each look can result in

either a “live” or “dead” assessment. The expectation is computed using Bayes’ Theorem:

E F Z p p F
p

p p

p p F
p

p p

n o o n
o

o o

o o n
o

o o

− −

−

= − + −
−

− + −
ç
åæ

ä
âã +

+ − −
+ − −

ç
åæ

ä
âã

1 1

1

1 1
1

1 1

1 1
1 1

1 6 1 6 1 6 1 6
1 6 1 6

1 61 6 1 61 6

β α
β

β α

β α β
β α

(7)

9

The optimal solution to DPj(λ) is piecewise-linear and convex[18], and current solution algorithms

exploit this structure. Space prevents us from discussing POMDP solution methods in detail; Lovejoy

[12] and Cassandra [3] provide good surveys.

Recent POMDP literature (e.g., Cassandra [2]) notes that while getting exact solutions to a POMDP can

be very difficult, approximate solutions with bounds are much easier to compute. We employ Cheng’s [5]

“linear support algorithm”, which works well for two-state POMDPs and can be adjusted to produce a

solution with any desired level of accuracy. This is a crucial point, since it is pointless to solve DPj(λ) to

optimality in the early stages of the decomposition when λ is changing rapidly. A better strategy is to

approximate the solution of DPj(λ) while still providing improving columns to the master LP. However, it

is necessary to find bounds on optimal solutions provided by the POMDP to determine a global upper

bound. This is another advantage of the linear support algorithm, as it provides these bounds.

In our implementation, we gradually increase the accuracy of the POMDP solutions as the decomposition

progresses. Table 1 shows the solution times for the test problem using exact versus approximate POMDP

solutions for the subproblems. We compute the decomposition gap as the (upper bound – lower

bound)/upper bound, and stop when this gap < 0.001. Both cases start with the same initial set of policies.

The strategy of adjusting the POMDP accuracy cuts the subproblem solution time by over an order of

magnitude.

The computation times reported in Table 1 were obtained using a 333MhZ Pentium II PC running

Microsoft Windows NT 4.0. The code itself is written in Microsoft Visual Basic 5.0; the master LPs were

solved using the CPLEX 5.0 Callable Library. We used a simple heuristic to generate an initial set of

policies, and then followed the algorithm as developed in Sections 2 and 3.

The algorithm generated only a few thousand columns in addition to the initial columns, a tiny fraction of

the available policies. The decomposition has slow convergence, with the majority of the solution time

spent achieving very small improvements. The approximate POMDP method, for example, reaches a 0.05

gap in 38 seconds and a 0.01 gap in 80 seconds.

The algorithm can compute an exact optimal solution, but requires considerably more time. Reducing the

gap from 0.001 to 0 increased the solution time from 188 to 652 seconds, and increased the number of

iterations from 79 to 121. This increased expenditure only improved the lower bound by 0.006%.

One feature of the optimal policies is worthy of comment. An optimal policy will sometimes pause for

one or two stages before first striking a target. The reason for this is the price of early strikes invariably

turns out to be higher than the price of late ones, in spite of the fact that that strikes are equally

constrained in each stage. The reason for this decreasing strike price is that valuable targets may require

10

multiple rounds of shooting and looking, which requires getting started immediately. Therefore it makes

sense to delay strike activity for less valuable targets that do not require that kind of treatment. This

realistic tendency happens naturally in our formulation, and is impossible to generate in an ordinary

POMDP where resource prices are constant.

6. Bounds, Policy Application, and Reoptimization

The soft constraints in LP2 state that resources must not be exhausted, on the average. The “rigid” version

of this problem would require that resources never be exhausted. The quantity r(k,u,x) was earlier defined

as the mean resource consumption at stage k if action u is taken when the object under consideration is in

state x. The resource quantities consumed may by implication be random, so additional structural

assumptions are needed in the rigid version about stochastic independence and what happens when

resources are exhausted.

Whether the rigid or soft version is superior as a model depends on circumstances. For example, There

has been a long debate within the Air Force about whether aircraft attrition is better modeled as a penalty

in the objective function or as an explicit constraint. A compromise position might be that it should be

modeled as a constraint, but a soft constraint rather than a rigid one. There is a similar issue with respect

to the availability of aircraft sorties within a given period, since there is always a certain amount of

flexibility in the short term.

However, there can be no debate about the relative tractability of the soft and rigid versions. We speculate

that rigid versions of problems on the scale of the BDA problem in section 5 will never be solvable, since

rigid constraints force the consideration of a single large POMDP involving all objects, rather than a

separate small POMDP for each one. The rigid version is therefore much more difficult than the soft one.

In spite of this intractability, any rigid problem can at least be approximated through the soft version.

Depending on the additional structural assumptions mentioned above, the soft version may be a relaxation

of the rigid one. Since the mean of any random variable bounded above by b is also necessarily bounded

above by b, the optimized soft objective function will be an upper bound on the rigid one.

There are a variety of ways to use soft policies as a “template” for rigid policies. However, given the

staged structure of the POMDP, it makes sense to reoptimize the soft problem between stages, using

current resource levels and target states to establish a new set of optimal policies. The rest of this section

gives the details of an example of this type of rigid policy for the BDA problem of section 4.

The BDA problem has several characteristics that make it an apt subject for rigid policy determination.

The current consumption of resources by each action is deterministic, for one thing, and in addition the

resource constraints are all integral. This means that there are no actions that gamble with feasibility, a

11

simplifying feature that guarantees that the soft solution is an upper bound on the rigid one. The

optimized soft decision variables xsj may nonetheless be non-integral, so they cannot be applied directly

to the rigid problem. We resolve this difficulty by basing the actions in the current stage on a solution of

LP2(S) where policies that result in the consumption of resources in the current stage are required to be

integral. The associated actions are guaranteed to be feasible in the current stage, even in the rigid

problem.

After simulating the results of the allocations computed for the current stage and updating the state of

each object, the next stage is considered, and so on. In our example problem, the actions taken in the

current stage lead to deterministic consumptions; only the future consumptions are probabilistic, based on

the outcomes of the look actions. Therefore, we only need to enforce integrality for policies that consume

resources in the current stage. There are many ways this integrality condition could be enforced, and an

optimal approach would involve embedding the decomposition in a branch-and-bound procedure. Our

approach is simpler; we solve LP2(S) to a specified gap, then, using the generated columns only (the set

S′), we solve a mixed-integer program MP2(S′) that requires integral assignments for policies using

resources in the current stage.

As time progresses, a given class of targets may fragment into individuals in many states on account of

the randomness inherent in strikes and observations, as well as treatment by different policies. The

number of allocation constraints in LP2(S) must grow to include one for every (class, state) pair, so

LP2(S) becomes increasingly larger. However, the POMDP solutions do not grow in difficulty because

the POMDP solution for each target class covers all states automatically. Our experience is that solutions

times for LP2(S) are still smaller than POMDP times, even when LP2(S) grows in size and complexity

due to the integrality restrictions and multiple allocation constraints.

The following procedure implements and tests the above scheme by Monte Carlo simulation, with the

index k being a repetition counter:

1. Set k = 0.

2. If k = desired number of repetitions, stop; otherwise, set k = k + 1, set each object to its initial
(known) state, and set n = number of stages in the time horizon.

3. Solve LP2(S) for the current states of all the objects, the current resources available, and n stages
yielding the set S′.

4. Solve MP2(S′) to get integral policy assignments for the current stage.

5. Simulate outcomes for the current stage and update object states and resources used.

6. If n = 1, set n = 0 and go to 5; if n = 0, go to 2; otherwise, set n = n - 1 and go to 4.

12

Figure 1 shows the distribution of 180 such repetitions for the BDA problem. As expected, the soft

solution provided by LP2(S) is larger than the sample mean. However, the sample mean is within 5% of

this upper bound for the tested rigid strategy, and would presumably be even closer if more sophisticated

reoptimization strategies were employed. Our heuristic explanation of this closeness is that the POMDP is

aware of the marginal costs of the resources and plans accordingly, so as columns are generated, the costs

of the resources directly affect the distributions of their use in the policies. We expect to find that the

percentage difference between the soft and rigid problems becomes small as the scale of the problem

increases, and take these results as evidence to that effect. This is another reason for our use of the term

“large-scale” in the title.

We offer one final comment on this simulation. Much of the stochastic programming literature is

concerned with finding bounds on objective function values, and we have exploited a great deal of this

theory in our work. However, by making the initial decomposition fast, we feel that the optimize-

simulate-optimize procedure shown above has great value in modeling problems of this type. Objective

function bounds do not describe the distribution of outcomes, and in allocation problems, the distributions

of allocations and resource usage are often more important than the distribution of objective function

values. Many authors, such as Geoffrion and Powers [6] have commented on the fragility of optimization

solutions and their tendency to produce solutions that use resources in an extreme fashion. A Monte Carlo

simulation such as this can give a better idea of allocation variability in time-staged problems and perhaps

even provide more robust solution strategies.

7. Summary

We have outlined a new LP/POMDP technique for solving large-scale allocation problems with partially

observable states and constrained action and observation resources. Our decomposition technique uses the

strengths of linear programming in determining resource allocation and implicit resource prices, and the

strengths of partially observable Markov decision processes in determining optimal policies extended in

time.

We believe the LP/POMDP technique holds great promise for situations where information-gathering

resources must be shared among many objects. While our research has been oriented towards military

problems, it is not hard to find other applications with these characteristics. In particular, the medical

world is replete with constrained observation resources (X-rays, MRI’s, consultations with doctors) that

only partially reveal a patient’s true state. Similar situations exist in education, criminal justice, and

environmental management. In the information age, it will become increasingly important to consider

problems such as these where opportunities for observation and transformation are intermixed. The

LP/POMDP technique can solve some of them.

13

References

1. Bertsekas, Dimitri P., Dynamic Programming and Stochastic Control, Academic Press, New York,
1976, pp. 111-128.

2. Cassandra, Anthony R., Exact and Approximate Algorithms for Partially Observable Markov
Decision Processes, Ph.D. thesis, Brown University, May 1998, p. 313.

3. Cassandra, Anthony R., Optimal Policies for Partially Observable Markov Decision Processes,
Technical Report CS-94-14, Brown University, August 1994.

4. Castonon, David A., “Approximate Dynamic Programming for Sensor Management,” in Proceedings
of the 36th IEEE Conference on Decision and Control, Vol. 2, IEEE Control Systems Society,
Danvers, MA, pp. 1202-1207.

5. Cheng, Hsien-Te, Algorithms for Partially Observable Markov Decision Processes, Ph.D. thesis,
University of British Columbia, August 1988, pp. 52-61.

6. Geoffrion, Arthur M., and R. F. Powers, “Twenty Years of Strategic Distribution System Design: An
Evolutionary Perspective,” Interfaces, Vol. 25, No. 5 (1995), pp. 105-127.

7. Gilmore, P. C., and R. E. Gomory, “A Linear Programming Approach to the Cutting Stock Problem,”
Operations Research, Vol. 9 (1961), pp. 849-859.

8. Gilmore, P. C., and R. E. Gomory, “A Linear Programming Approach to the Cutting Stock Problem
— Part II,” Operations Research, Vol. 11 (1963), pp. 863-888.

9. Haneveld, W. K. K., “Chapter 3: Stochastic Linear Programming Models,” in Duality in Stochastic
Linear and Dynamic Programming, Springer-Verlag, Berlin, 1986, pp. 22-47.

10. Jonsbraten, Tore W., Optimal Selection and Sequencing of Oil Wells under Reservoir Uncertainty,
technical report, Department of Business Adminstration, Stavanger College, Norway, July 1997.

11. Jonsbraten, Tore W., Roger J-B Wets, and David L. Woodruff, A Class of Stochastic Programs with
Decision Dependent Random Elements, technical report, University of California Davis, August
1997.

12. Lovejoy, William S., “A Survey of Algorithmic Methods for Partially Observed Markov Decision
Processes,” Annals of Operations Research, Vol. 28, No. 1 (1991), pp. 47-65.

13. Marshall, Kneale T., and Robert M. Oliver, Decision Making and Forecasting, McGraw-Hill, New
York, 1995.

14. Papadimitriou, Christos H., and John N. Tsitsiklis, “The Complexity of Markov Decision Processes,”
Mathematics of Operations Research, Vol. 12 (1987), pp. 441-450.

15. Parker, R. Gary, and R. R. Rardin, Discrete Optimization, Academic Press, San Diego, 1988, pp. 205-
230.

16. Pflug, Georg, “On-line Optimization of Simulated Markov Processes,” Mathematics of Operations
Research, Vol. 15 (1990), pp. 381-395.

17. Scott, William B., “Computer/IW Efforts Could Shortchange Aircraft Programs,” Aviation Week and
Space Technology, January 19, 1998, p. 59.

18. Smallwood, Richard, and E. J. Sondik, “The Optimal Control of Partially Observable Markov
Decision Processes over a Finite Horizon,” Operations Research, Vol. 21 (1973), pp. 1071-1088.

14

Section of Algorithm Exact POMDP Solutions Approx POMDP solutions

Master LPs 31 sec 28 sec

POMDP subproblems 1976 sec 145 sec

Total Solution Time 2028 sec 188 sec

Initial Columns 2214 2214

Total Columns Generated 3373 2802

Total Iterations 76 79

Table 1. Solution Statistics for the Test Weapon-Sensor-Target Assignment Problem.

15

Distribution of Simulation Outcomes (180 Repetitions)

0

5

10

15

20

25

30

35

40

50000 52000 54000 56000 58000 60000 62000 64000

Objective Function Value

N
um

be
r

of
 R

ep
et

iti
on

s

Simulation Mean:
57953

Upper Bound:
60651

Figure 1. Comparison of Simulation Outcomes and Original Upper Bound for Test Weapon-
Sensor-Target Assignment Problem. The mean objective function value through 180 repetitions
of the simulation is within 5% of the value computed by the decomposition algorithm.

